If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16P^2-12
We move all terms to the left:
-(16P^2-12)=0
We get rid of parentheses
-16P^2+12=0
a = -16; b = 0; c = +12;
Δ = b2-4ac
Δ = 02-4·(-16)·12
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-16}=\frac{0-16\sqrt{3}}{-32} =-\frac{16\sqrt{3}}{-32} =-\frac{\sqrt{3}}{-2} $$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-16}=\frac{0+16\sqrt{3}}{-32} =\frac{16\sqrt{3}}{-32} =\frac{\sqrt{3}}{-2} $
| -2(7=4x)=74 | | 96=5(4n-6)-2n | | C=24x+80R=44x | | 7(4)+5y=-3 | | 0+9y=18 | | P=16x^2-15 | | 8-x+x^2=1/24x | | 3(3-5x)=9 | | 9(0)+x=18 | | 6x=-6x-2 | | 6x+12=4x-4 | | (1450-2y)/3=(1700-5y)/2 | | -6(-5x+7)=-192 | | -8(7+x)=-96 | | 3x+10+4x=-60 | | 2=x3 | | 9m=4*36 | | -3-6x-6x=-39 | | 10/3=9k | | 4x4-5x2+1=1 | | 10/3=9k | | 10=9k | | 8^2+8^2=x | | 43=-7k+8 | | 10+6x+10+9x+4+7x+2+12x-8+8x-16=360 | | 6-2(4-x)+3x=5x+2 | | x/9+10=21 | | 11x-18=5x | | 9+1/2x=5x=1 | | 42=u/2+17 | | x/1+1=3 | | x−23=3 |